Density of Eigenvalues of Random Normal Matrices with an Arbitrary Potential, and of Generalized Normal Matrices⋆
نویسنده
چکیده
Following the works by Wiegmann–Zabrodin, Elbau–Felder, Hedenmalm–Makarov, and others, we consider the normal matrix model with an arbitrary potential function, and explain how the problem of finding the support domain for the asymptotic eigenvalue density of such matrices (when the size of the matrices goes to infinity) is related to the problem of Hele-Shaw flows on curved surfaces, considered by Entov and the first author in 1990-s. In the case when the potential function is the sum of a rotationally invariant function and the real part of a polynomial of the complex coordinate, we use this relation and the conformal mapping method developed by Entov and the first author to find the shape of the support domain explicitly (up to finitely many undetermined parameters, which are to be found from a finite system of equations). In the case when the rotationally invariant function is β|z|2, this is done by Wiegmann–Zabrodin and Elbau–Felder. We apply our results to the generalized normal matrix model, which deals with random block matrices that give rise to ∗-representations of the deformed preprojective algebra of the affine quiver of type Âm−1. We show that this model is equivalent to the usual normal matrix model in the large N limit. Thus the conformal mapping method can be applied to find explicitly the support domain for the generalized normal matrix model.
منابع مشابه
A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملDensity of Eigenvalues of Random Normal Matrices
The relation between random normal matrices and conformal mappings discovered by Wiegmann and Zabrodin is made rigorous by restricting normal matrices to have spectrum in a bounded set. It is shown that for a suitable class of potentials the asymptotic density of eigenvalues is uniform with support in the interior domain of a simple smooth curve.
متن کاملComputational aspect to the nearest southeast submatrix that makes multiple a prescribed eigenvalue
Given four complex matrices $A$, $B$, $C$ and $D$ where $Ainmathbb{C}^{ntimes n}$ and $Dinmathbb{C}^{mtimes m}$ and let the matrix $left(begin{array}{cc} A & B C & D end{array} right)$ be a normal matrix and assume that $lambda$ is a given complex number that is not eigenvalue of matrix $A$. We present a method to calculate the distance norm (with respect to 2-norm) from $D$ to ...
متن کاملWeak log-majorization inequalities of singular values between normal matrices and their absolute values
This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$. Some applications to these inequalities are also given. In addi...
متن کاملOn higher rank numerical hulls of normal matrices
In this paper, some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated. A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given. Moreover, using the extreme points of the numerical range, the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$, where $A_1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006